Devoir Surveillé N°9

5 Juin 2007 Durée 2h

(l'usage de la calculatrice est interdit dans ce DS)

Exercice N°1: (10 points)

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2. On note Id l'application identique de \mathbb{R}^n .

Partie 1 : étude des symétries de \mathbb{R}^n .

Soient F_1 et F_2 deux sous-espaces vectoriels de \mathbb{R}^n , non réduits au seul vecteur nul, et supplémentaires, c'est-à-dire tels que $\mathbb{R}^n = F_1 \oplus F_2$.

On appelle symétrie par rapport à F_1 parallèlement à F_2 , l'endomorphisme s de \mathbb{R}^n défini pour tout x de \mathbb{R}^n tel que $x = x_1 + x_2$ (avec $x_1 \in F_1$ et $x_2 \in F_2$) par $s(x) = x_1 - x_2$. Dans les trois premières questions, on considère une telle symétrie notée s.

- 1) a. Montrer que : $\forall x \in F_1$, s(x) = x.
 - b. En déduire que $Ker(s Id) = F_1$.
- 2) a. Montrer que : $\forall x \in F_2$, s(x) = -x.
 - b. En déduire que $Ker(s + Id) = F_2$.

Partie 2 : étude de deux exemples.

- 1) Soit s un endomorphisme de \mathbb{R}^n tel que $s \circ s = Id$. Montrer que, pour tout x de \mathbb{R}^n : $x + s(x) \in \operatorname{Ker}(s - Id)$ et $x - s(x) \in \operatorname{Ker}(s + Id)$.
- 2) En déduire que Ker(s Id) et Ker(s + Id) sont supplémentaires.
- 3) Établir enfin que s est la symétrie par rapport à Ker(s Id) parallèlement à Ker(s + Id).

Partie 3: symétries orthogonales.

On considère l'espace vectoriel \mathbb{R}^n , muni de sa structure euclidienne usuelle dans lequel le produit scalaire canonique est noté < , >. On dit que f est symétrique ssi $\forall (x,y) \in (\mathbb{R}^n)^2$, $\langle f(x), y \rangle = \langle x, f(y) \rangle$ Pour tout sous-espace vectoriel F de \mathbb{R}^n , non réduit au seul vecteur nul et différent de \mathbb{R}^n , on appelle symétrie orthogonale par rapport à F la symétrie par rapport à F parallèlement à F^{\perp} .

1) Dans cette question, on suppose que n = 3. Montrer que la matrice $M = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix}$,

est la matrice d'une symétrie orthogonale.

- 2) On considère une symétrie s de \mathbb{R}^n et on se propose d'établir l'équivalence suivante :
 - s est une symétrie orthogonale si et seulement si s est un endomorphisme symétrique.
 - a. On suppose que s est un endomorphisme symétrique de \mathbb{R}^n . Vérifier que : $\forall x \in \text{Ker}(s - Id), \ \forall y \in \text{Ker}(s + Id), \ \langle x, y \rangle = 0$, puis conclure que s est la symétrie orthogonale par rapport à Ker(s - Id).
 - b. Soit F un sous-espace vectoriel de \mathbb{R}^n , non réduit au seul vecteur nul et différent de \mathbb{R}^n . On prend maintenant l'hypothèse : s est la symétrie orthogonale par rapport à F. En écrivant $x = x_1 + x_2$ avec $(x_1, x_2) \in F \times F^{\perp}$ et $y = y_1 + y_2$ avec $(y_1, y_2) \in F \times F^{\perp}$, montrer que : $\forall (x, y) \in E^2$, $\langle s(x), y \rangle = \langle x, s(y) \rangle$. Conclure.

- 3) Soit F un sous-espace vectoriel de \mathbb{R}^n , non réduit au seul vecteur nul et différent de \mathbb{R}^n . Soit s la symétrie orthogonale par rapport à F et p la projection orthogonale sur F.
 - a. Montrer que s = 2p Id.
 - b. En déduire que si $(u_1, ..., u_p)$ est une base orthonormale de F, alors :

$$\forall x \in \mathbb{R}^{n}, s(x) = 2\sum_{i=1}^{p} \langle x, u_{i} \rangle u_{i} - x.$$

- 4) Dans cette question, on suppose que n = 3 et que F a pour équation : x 2y + 3z = 0.
 - a. Déterminer une base orthonormale de F.
 - b. En déduire la matrice N, relativement à la base canonique de \mathbb{R}^3 , de la symétrie orthogonale par rapport à F.

Exercice N°2: (10 points)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \frac{1}{4} \begin{pmatrix} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix} \text{ et g celui de matrice } B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 1) Montrer que f est une isométrie vectorielle.
- 2) Déterminer F=Ker(f-Id).
- 3) a) Déterminer une base \mathcal{D} orthonormale (u,v,w) de \mathbb{R}^3 où u est un vecteur normé de Ker(A+I).
 - **b)** Exprimer les vecteurs f(u),f(v) et f(w) en fonction des vecteurs u, v et w.
 - c) En déduire la matrice de f dans la base \mathcal{G} .
 - d) Donner les éléments caractéristiques de f.
- 4) Déterminer G=Ker(g+Id).
- 5) On pose s réflexion vectorielle par rapport à P d'équation -x+y+z=0.
 - a) Déterminer la matrice S de s dans la base canonique de \mathbb{R}^3 .
 - **b)** Calculer $M = S \times B$. Déterminer la nature de M.
 - ${f c})$ On note r l'endomorphisme de matrice M , Déterminer les éléments géométriques de g .
- 6) En déduire la nature de h de matrice $C = \frac{1}{4} \begin{pmatrix} 1 & 3 & -\sqrt{6} \\ \sqrt{6} & -\sqrt{6} & -2 \\ 3 & 1 & \sqrt{6} \end{pmatrix}$. (On pourra calculer BxA)